数据库引擎
数据库中的存储引擎其实是对使用了该引擎的表进行某种设置,数据库中的表设定了什么存储引擎,那么该表在数据存储方式、数据更新方式、数据查询性能以及是否支持索引等方面就会有不同的“效果”。在MySQL数据库中存在着多种引擎(不同版本的MySQL数据库支持的引擎不同),熟悉各种引擎才能在软件开发中应用引擎,从而开发出高性能的软件,MySQL数据库中的引擎有哪些呢?一般来说,MySQL有以下几种引擎:ISAM、MyISAM、HEAP(也称为MEMORY)、CSV、BLACKHOLE、ARCHIVE、PERFORMANCE_SCHEMA、InnoDB、 Berkeley、Merge、Federated和Cluster/NDB等,除此以外我们也可以参照MySQL++ API创建自己的数据库引擎。下面逐次介绍一下各种引擎:
ISAM
该引擎在读取数据方面速度很快,而且不占用大量的内存和存储资源;但是ISAM不支持事务处理、不支持外来键、不能够容错、也不支持索引。该引擎在包括MySQL 5.1及其以上版本的数据库中不再支持。
MyISAM
该引擎基于ISAM数据库引擎,除了提供ISAM里所没有的索引和字段管理等大量功能,MyISAM还使用一种表格锁定的机制来优化多个并发的读写操作,但是需要经常运行OPTIMIZE TABLE命令,来恢复被更新机制所浪费的空间,否则碎片也会随之增加,最终影响数据访问性能。MyISAM还有一些有用的扩展,例如用来修复数据库文件的MyISAMChk工具和用来恢复浪费空间的 MyISAMPack工具。MyISAM强调了快速读取操作,主要用于高负载的select,这可能也是MySQL深受Web开发的主要原因:在Web开发中进行的大量数据操作都是读取操作,所以大多数虚拟主机提供商和Internet平台提供商(Internet Presence Provider,IPP)只允许使用MyISAM格式。
MyISAM类型的表支持三种不同的存储结构:静态型、动态型、压缩型。
静态型:指定义的表列的大小是固定(即不含有:xblob、xtext、varchar等长度可变的数据类型),这样MySQL就会自动使用静态MyISAM格式。使用静态格式的表的性能比较高,因为在维护和访问以预定格式存储数据时需要的开销很低;但这种高性能是以空间为代价换来的,因为在定义的时候是固定的,所以不管列中的值有多大,都会以最大值为准,占据了整个空间。
动态型:如果列(即使只有一列)定义为动态的(xblob, xtext, varchar等数据类型),这时MyISAM就自动使用动态型,虽然动态型的表占用了比静态型表较少的空间,但带来了性能的降低,因为如果某个字段的内容发生改变则其位置很可能需要移动,这样就会导致碎片的产生,随着数据变化的增多,碎片也随之增加,数据访问性能会随之降低。
对于因碎片增加而降低数据访问性这个问题,有两种解决办法:
a、尽可能使用静态数据类型;
b、经常使用optimize table table_name语句整理表的碎片,恢复由于表数据的更新和删除导致的空间丢失。如果存储引擎不支持 optimize table table_name则可以转储并 重新加载数据,这样也可以减少碎片;
压缩型:如果在数据库中创建在整个生命周期内只读的表,则应该使用MyISAM的压缩型表来减少空间的占用。
Merge
该引擎将一定数量的MyISAM表联合而成一个整体。
HEAP(也称为MEMORY)
该存储引擎通过在内存中创建临时表来存储数据。每个基于该存储引擎的表实际对应一个磁盘文件,该文件的文件名和表名是相同的,类型为.frm。该磁盘文件只存储表的结构,而其数据存储在内存中,所以使用该种引擎的表拥有极高的插入、更新和查询效率。这种存储引擎默认使用哈希(HASH)索引,其速度比使用B-+Tree型要快,但也可以使用B树型索引。由于这种存储引擎所存储的数据保存在内存中,所以其保存的数据具有不稳定性,比如如果mysqld进程发生异常、重启或计算机关机等等都会造成这些数据的消失,所以这种存储引擎中的表的生命周期很短,一般只使用一次。
CSV(Comma-Separated Values逗号分隔值)
使用该引擎的MySQL数据库表会在MySQL安装目录data文件夹中的和该表所在数据库名相同的目录中生成一个.CSV文件(所以,它可以将CSV类型的文件当做表进行处理),这种文件是一种普通文本文件,每个数据行占用一个文本行。该种类型的存储引擎不支持索引,即使用该种类型的表没有主键列;另外也不允许表中的字段为null。
BLACKHOLE(黑洞引擎)
该存储引擎支持事务,而且支持mvcc的行级锁,写入这种引擎表中的任何数据都会消失,主要用于做日志记录或同步归档的中继存储,这个存储引擎除非有特别目的,否则不适合使用。详见博客《BlackHole 存储引擎》
Berkeley(BDB)
该存储引擎支持COMMIT和ROLLBACK等其他事务特性。该引擎在包括MySQL 5.1及其以上版本的数据库中不再支持。
Federated
该存储引擎可以不同的Mysql服务器联合起来,逻辑上组成一个完整的数据库。这种存储引擎非常适合数据库分布式应用。
Cluster/NDB
该存储引擎用于多台数据机器联合提供服务以提高整体性能和安全性。适合数据量大、安全和性能要求高的场景。
PERFORMANCE_SCHEMA
该引擎主要用于收集数据库服务器性能参数。这种引擎提供以下功能:提供进程等待的详细信息,包括锁、互斥变量、文件信息;保存历史的事件汇总信息,为提供MySQL服务器性能做出详细的判断;对于新增和删除监控事件点都非常容易,并可以随意改变mysql服务器的监控周期,例如(CYCLE、MICROSECOND)。
ARCHIVE
该存储引擎非常适合存储大量独立的、作为历史记录的数据。区别于InnoDB和MyISAM这两种引擎,ARCHIVE提供了压缩功能,拥有高效的插入速度,但是这种引擎不支持索引,所以查询性能较差一些。
InnoDB
该存储引擎为MySQL表提供了ACID事务支持、系统崩溃修复能力和多版本并发控制(即MVCC Multi-Version Concurrency Control)的行级锁;该引擎支持自增长列(auto_increment),自增长列的值不能为空,如果在使用的时候为空则自动从现有值开始增值,如果有但是比现在的还大,则直接保存这个值; 该引擎存储引擎支持外键(foreign key),外键所在的表称为子表而所依赖的表称为父表。该引擎在5.5后的MySQL数据库中为默认存储引擎。
数据库索引
索引的定义
索引问题就是一个查找问题**
数据库索引,是数据库管理系统中一个排序的数据结构,以协助快速查询、更新数据库表中数据。索引的实现通常使用B树及其变种B+树。
在数据之外,数据库系统还维护着满足特定查找算法的数据结构*¡,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。
为表设置索引要付出代价的:一是增加了数据库的存储空间,二是在插入和修改数据时要花费较多的时间(因为索引也要随之变动)。
索引的优缺点
创建索引可以大大提高系统的性能。
第一,通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。
第二,可以大大加快数据的检索速度,这也是创建索引的最主要的原因。
第三,可以加速表和表之间的连接,特别是在实现数据的参考完整性方面特别有意义。
第四,在使用分组和排序子句进行数据检索时,同样可以显著减少查询中分组和排序的时间。
第五,通过使用索引,可以在查询的过程中,使用优化隐藏器,提高系统的性能。
也许会有人要问:增加索引有如此多的优点,为什么不对表中的每一个列创建一个索引呢?因为,增加索引也有许多不利的方面。
第一,创建索引和维护索引要耗费时间,这种时间随着数据量的增加而增加。
第二,索引需要占物理空间,除了数据表占数据空间之外,每一个索引还要占一定的物理空间,如果要建立聚簇索引,那么需要的空间就会更大。
第三,当对表中的数据进行增加、删除和修改的时候,索引也要动态的维护,这样就降低了数据的维护速度。
索引创建的选择
索引是建立在数据库表中的某些列的上面。在创建索引的时候,应该考虑在哪些列上可以创建索引,在哪些列上不能创建索引。
应该在这些列上创建索引:在经常需要搜索的列上,可以加快搜索的速度;在作为主键的列上,强制该列的唯一性和组织表中数据的排列结构;在经常用在连接的列上,这些列主要是一些外键,可以加快连接的速度;在经常需要根据范围进行搜索的列上创建索引,因为索引已经排序,其指定的范围是连续的;在经常需要排序的列上创建索引,因为索引已经排序,这样查询可以利用索引的排序,加快排序查询时间;在经常使用在WHERE子句中的列上面创建索引,加快条件的判断速度。
同样,对于有些列不应该创建索引。
不应该创建索引的的这些列具有下列特点:
第一,对于那些在查询中很少使用或者参考的列不应该创建索引。这是因为,既然这些列很少使用到,因此有索引或者无索引,并不能提高查询速度。相反,由于增加了索引,反而降低了系统的维护速度和增大了空间需求。
第二,对于那些只有很少数据值的列也不应该增加索引。这是因为,由于这些列的取值很少,例如人事表的性别列,在查询的结果中,结果集的数据行占了表中数据行的很大比例,即需要在表中搜索的数据行的比例很大。增加索引,并不能明显加快检索速度。
第三,对于那些定义为text, image和bit数据类型的列不应该增加索引。这是因为,这些列的数据量要么相当大,要么取值很少。
第四,当修改性能远远大于检索性能时,不应该创建索引。这是因为,修改性能和检索性能是互相矛盾的。当增加索引时,会提高检索性能,但是会降低修改性能。当减少索引时,会提高修改性能,降低检索性能。因此,当修改性能远远大于检索性能时,不应该创建索引。
索引的类型
根据数据库的功能,可以在数据库设计器中创建三种索引:唯一索引、主键索引和聚集索引。
唯一索引
唯一索引是不允许其中任何两行具有相同索引值的索引。
当现有数据中存在重复的键值时,大多数数据库不允许将新创建的唯一索引与表一起保存。数据库还可能防止添加将在表中创建重复键值的新数据。例如,如果在employee表中职员的姓(lname)上创建了唯一索引,则任何两个员工都不能同姓。
主键索引
数据库表经常有一列或列组合,其值唯一标识表中的每一行。该列称为表的主键。在数据库关系图中为表定义主键将自动创建主键索引,主键索引是唯一索引的特定类型。该索引要求主键中的每个值都唯一。当在查询中使用主键索引时,它还允许对数据的快速访问。
聚集索引
在聚集索引中,表中行的物理顺序与键值的逻辑(索引)顺序相同。一个表只能包含一个聚集索引。
如果某索引不是聚集索引,则表中行的物理顺序与键值的逻辑顺序不匹配。与非聚集索引相比,聚集索引通常提供更快的数据访问速度。
局部性原理与磁盘预读
由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘I/O。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理:当一个数据被用到时,其附近的数据也通常会马上被使用。程序运行期间所需要的数据通常比较集中。
由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高I/O效率。
预读的长度一般为页(page)的整倍数。页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页(在许多操作系统中,页得大小通常为4k),主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。
B-/+Tree索引的性能分析
到这里终于可以分析B-/+Tree索引的性能了。
上文说过一般使用磁盘I/O次数评价索引结构的优劣。先从B-Tree分析,根据B-Tree的定义,可知检索一次最多需要访问h个节点。数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次I/O就可以完全载入。为了达到这个目的,在实际实现B-Tree还需要使用如下技巧:
每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个node只需一次I/O。
B-Tree中一次检索最多需要h-1次I/O(根节点常驻内存),渐进复杂度为O(h)=O(logdN)。一般实际应用中,出度d是非常大的数字,通常超过100,因此h非常小(通常不超过3)。
而红黑树这种结构,h明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为O(h),效率明显比B-Tree差很多。
综上所述,用B-Tree作为索引结构效率是非常高的。
索引树的介绍
B树
即二叉搜索树:
1.所有非叶子结点至多拥有两个儿子(Left和Right);
2.所有结点存储一个关键字;
3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;
如:
B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;
否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入
右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;
如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树
的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构
(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;
如:
但B树在经过多次插入与删除后,有可能导致不同的结构:
右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的
树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就
是所谓的“平衡”问题;
实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树
结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的
策略;
B-树
是一种多路搜索树(并不是二叉的):
1.定义任意非叶子结点最多只有M个儿子;且M>2;
2.根结点的儿子数为[2, M];
3.除根结点以外的非叶子结点的儿子数为[M/2, M];
4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)
5.非叶子结点的关键字个数=指向儿子的指针个数-1;
6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];
7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的
子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;
8.所有叶子结点位于同一层;
如:(M=3)
B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果
命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为
空,或已经是叶子结点;
B-树的特性:
1.关键字集合分布在整颗树中;
2.任何一个关键字出现且只出现在一个结点中;
3.搜索有可能在非叶子结点结束;
4.其搜索性能等价于在关键字全集内做一次二分查找;
5.自动层次控制;
由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少
利用率,其最底搜索性能为:
其中,M为设定的非叶子结点最多子树个数,N为关键字总数;
所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;
由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占
M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;
B+树
B+树是B-树的变体,也是一种多路搜索树:
1.其定义基本与B-树同,除了:
2.非叶子结点的子树指针与关键字个数相同;
3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树
(B-树是开区间);
5.为所有叶子结点增加一个链指针;
6.所有关键字都在叶子结点出现;
如:(M=3)
B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在
非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;
B+的特性:
1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好
是有序的;
2.不可能在非叶子结点命中;
3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储
(关键字)数据的数据层;
4.更适合文件索引系统;
B*树
是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;
B树定义了非叶子结点关键字个数至少为(2/3)M,即块的最低使用率为2/3
(代替B+树的1/2);
B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据
复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父
结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;
B树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分
数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字
(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之
间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;
所以,B树分配新结点的概率比B+树要低,空间使用率更高;
小结
B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于
走右结点;
B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键
字范围的子结点;
所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;
B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点
中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;
B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率
从1/2提高到2/3;