8皇后之间需满足:
- 1.不在同一行上
- 2.不在同一列上
- 3.不在同一斜线上
- 4.不在同一反斜线上
这为我们提供一种遍历的思路,我们可以逐行或者逐列来进行可行摆放方案的遍历,每一行(或列)遍历出一个符合条件的位置,接着就到下一行或列遍历下一个棋子的合适位置,这种遍历思路可以保证我们遍历过程中有一个条件是绝对符合的——就是下一个棋子的摆放位置与前面的棋子不在同一行(或列)。接下来,我们只要判断当前位置是否还符合其他条件,如果符合,就遍历下一行(或列)所有位置,看看是否继续有符合条件的位置,以此类推,如果某一个行(或列)的所有位置都不合适,就返回上一行(或列)继续该行(或列)的其他位置遍历,当我们顺利遍历到最后一行(或列),且有符合条件的位置时,就是一个可行的8皇后摆放方案,累加一次八皇后可行方案的个数,然后继续遍历该行其他位置是否有合适的,如果没有,则返回上一行,遍历该行其他位置,依此下去。这样一个过程下来,我们就可以得出所有符合条件的8皇后摆放方案了。这是一个深度优先遍历的过程,同时也是经典的递归思路。
接下来,我们以逐列遍历,具体到代码,进一步说明。首先,从第一列开始找第一颗棋子的合适位置,我们知道,此时第一列的任何一个位置都是合适的,当棋子找到第一个合适的位置后,就开始到下一列考虑下一个合适的位置,此时,第二列的第一行及第二行显然就不能放第二颗棋子了,因为其与第一个棋子一个同在一行,一个同在一条斜线上。第二列第三行成为第二列第一个合适的位置,以此类推,第三列的第5行又会是一个合适位置,这个过程中,我们注意到,每一列的合适位置都是受到前面几列的位置所影响,归纳如下:
假设前面1列的棋子放在第3行,那当前列不能放的位置就一定是3行,2行,4行。因为如果放在这三行上就分别跟前一列的棋子同在一行、同在斜线、同在反斜线上,不符合我们的要求。现在我们用cols数组来表示8个列棋子所放的行数,数组下标从0开始,其中数组下标表示列数,数组的元素值表示该列棋子所在行数,当前列为N(N>=0,N<8),即cols[N-1]=3,则有:
cols[N] != cols[N-1](=3,表示不在同一行)
cols[N] != cols[N-1]-1(=3-1=2,表示不在同一斜线上)
cols[N]!=cols[N-1]+1(=3+1,表示不在同一反斜线上)
这里我们注意到,如果N-2列存在的话,那么我们还要考虑当前列N不与N-2列的棋子同行,同斜线,同反斜线。把当前列N的前面的某一列设为m,则m的所有取值为{m>=0,m<N}的集合,故又可在上面式子的基础,归纳为如下:
cols[N] != cols[m](与第m列的棋子不在同一行)
cols[N] != cols[m] -(N-m)(>=0 ,与第m列的棋子不在同一斜线上)
cols[N] != cols[m] + (N-m) (<=8-1,与第m列的棋子不在同一反斜线上)
具体到代码,很显然,取m的所有值只需要一句循环,同时我们为每一列定义一个长度为8的布尔数组row[],下标同样是从0开始,我们规定当row[i]=true时,表示该列第i行不能放棋子。这样我们就能写成下列程序段了:
1234567
boolean[] rows = new boolean[8]; for(int m=0;m<N;i++){ rows[cols[m]]=true;//当前列N的棋子不能放在前面列m的棋子所在行。 int d = N-m;//该句用于设置当前列N的棋子不能放在前面列m的棋子的斜线上 if(cols-d >= 0)rows[cols-d]=true; // 该句用于设置当前列N的棋子不能放在前面列m的棋子的反斜线上if(cols+d <=8-1)rows[cols+d]=true; }
好了,到此为止,我们程序的核心内容都具备了,一个基于深度优先的遍历流程和一个判断位置是否合适的算法。下面贴出运行后算出的所有可行方案(即92种,“+”号代表空棋位,“0”代表皇后所在位置),源码(注源码变量名定义与上述略有不同,打印效果也不是图片所显示的效果,代码有做些微改动)。
|
|